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Vegetation cover and elevation drive diversity aodposition of ant communities
(Hymenoptera: Formicidae) in a Mediterranean edesys
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Abstract

Identifying the environmental parameters govermpagerns of biodiversity and community compositi®particularly
important for planning conservation schemes andigtiag response of communities to global changehighlight
the parameters most relevant for explaining padtérrant assemblages at a local scale, we desaifitecbommunities
in 95 plots distributed along environmental gratBesn a mountain in the Mediterranean region oftsenn France.
Among the six environmental parameters considesiegh€, exposition, elevation, tree basal area,speeies diversity,
and the dominant tree species), tree basal argad@ proxy for tree cover) and elevation had bytfer strongest
influence on ant species richness, diversity, ardmunity composition. Ant richness and diversitgmased with
increasing tree cover and elevation. Tree coverehsilonger effect than elevation, corroboratingltingstanding
hypothesis that radiant energy that heats foragirigstrates might be more relevant to ants tharageeemperature.
Deciphering local processes that structure comnasniontributes to a better understanding of glphatierns.
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Introduction

Identifying the environmental parameters that govege-  environmental gradients. Apart from rare cases stgw
cies distributions and the composition of commusitat  no relationship between ant diversity and elevafmg.,
local and global scales is key to understandingystem  ORABI & al. 2011), ant diversity is shown to decreastwi
dynamics and spatial patterns of biodiversity. ilRetance,  increasing elevation following three types of rielaships:

knowing these parameters is particularly usefuldi- linear decrease @UJO & FERNANDES 2003, FhGVAR
dicting responses of species and ecosystems tarango 2005, GASER 2006, LESSARD & al. 2007), exponential
climate change and for treating other questiortsiduli- decrease (BUHL & al. 1999), and mid-elevation peak

versity conservation (e.g.,dHKINSON 2005, GJENARD & (SAMSON & al. 1997, FSHER 1998,VAN DER HAMMEN &
al. 2012). Ecologists have long documented gloaiens  WARD 2005, 3BU & al. 2008, LONGINO & COLWELL
of biodiversity along latitudinal or elevationalaglients 2011, DL TORO 2013, ™ITH & al. 2014). In the tropics,
but the underlying mechanisms are still debatessfGN the drop of ant diversity toward the top of altinal gra-
2000, WLLIG & al. 2003, WRRIE & al. 2004). Although  dients can be particularly strongwhatever the shape of
some universal patterns are undisputetecrease of di- the relationship- (e.g., ANzEN 1973, 3MSON & al. 1997,
versity with increasing elevation and latitudéhe response  BRUHL & al. 1999, IONGINO & COLWELL 2011) when
to environmental parameters varies across taxongmoigps  compared with the diversity of other insects, sastilies
(McCaIN & GRYTNES 2010). This must be taken into con- (Diptera) (ANZEN & al. 1976). Interestingly, as noted by
sideration for a more accurate understanding afystem  JANZEN (1973), this drop is also less pronounced in tem-
composition and dynamics. perate-climate regions, except for particularly tuareas
The case of ants, compared with other insectgris-p such as wet coastal mountain ranges. This differdec
cularly illustrative of variation across taxa irsppnse to  tween ants and flies and between tropical and teatpe



Fig. 1: Localisation of the study site an(-
sampling plots. Delimitation of the natu|
ral reserves of Nohédes (North), Con{
(East), and Jujols (South) is given.
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environments for ants can be explained by the Ihgsi$
that radiant energy is the most limiting factor &mts and
that humidity and cloud cover, which are particiylam-
portant on tropical mountains, dissipate radiaiatt I(&N-
ZEN 1973, 1983, GsON 1994, FSHER 1996). Thus, the li-
near decrease of average temperature with incgeaten
vation is not the only parameter driving ant diitgrsSimi-
larly, average temperature does not fully expldobgl
patterns in the distribution of ant diversitgfkins & al.
2011). Although recently developed macro-ecologigal
proaches are greatly contributing to the understanof
ant diversity patterns at the global scale$kar| & al.
2004, DUNN & al. 2007, SNDERS & al. 2007, DUNN & al.
2009a, b, GENARD & al. 2012, EoNOMO & al. 2015),
we still need investigations at a local scale &s&tt mech-
anisms underlying diversity patterns.

The relatively large body of literature on the m@sge
of ants to environmental gradients in lowland Meuta-

nean landscapes provides details about the mechanis

driving responses of ant communities to temperatéire
first point is that open habitats may support comities
that have higher evenness (i.e., species haver ckdaéve
proportions) than forested habitats because thegrience
stronger daily and seasonal variation of tempeeagspe-
cially at ground level. This variation allows costence
of heat-tolerant subordinate and heat-intoleramidant
species through temporal variation of foraging\étgtipat-
terns (ERDA & al. 1997, ®0sS & al. 1997, GRDA & al.
1998a, ERDA & al. 1998b, RTANA & CERDA 2000). A
second point is the finding that functional trartsMedi-
terranean ant communities vary along environmegrea
dients and are strongly influenced by temperaqnesipi-
tation and tree cover @NAN & al. 2012, BERNADOU &
al. 2013). It has also been shown that the dedrbalitat
openness affects ant community compositioniiMal &
FOORD 2012, BERNADOU & al. 2013), and is positively
correlated with ant diversity @AN & al. 2009, L TORO
2013, DEL TORO & al. 2013, BERNADOU & al. 2015) and
evenness (RTANA & CERDA 2000). Although it is acknowl-
edged that elevation, temperature and vegetatioer ¢o-
fluence patterns of ant communities and diversitgau-
sal link between vegetation cover and ant diverity to
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the effect of cover on the amount of radiant eneit
heats foraging substrates has never been expliegted.

We took advantage of a thorough survey of the aints
Mount Coronat (EBAs & al. 2015), in southern France,
to investigate the relative importance of variob#tc
parameters in explaining ant diversity and commyuoim-
position and to propose a direct link between thEsa-
meters and the radiant-energy hypothesis, i.e.hype-
thesis that radiant energy that heats foragingtsates is
among the factors most constraining ant diversity @m-
munity composition. The ant survey was performed on
plots where vegetation parameters had also beendest;
allowing testing for relationships between vegetatnd
the diversity and composition of ant communities.

Material and methods

The study area consisted in three contiguous natera
serves (Conat, Jujols and Nohédes) covering a tdtal
3158 ha on the eastern, northern and southernslofpe
Mount Coronat, located at the eastern end of thierfegs
mountain chain in southern France. The area is6@dm
the Mediterranean Sea and elevation ranges from®00
2460 m above sea level (a.s.l.). As a consequéndis;
plays a strong environmental gradient from a Meritee-
an climate with dry summers and cold humid wintera
wet mountain climate. The village of Nohédes (N2283,
E2.28917, 970 m a.s.l.), located on the edge ohéteral
reserve, 3 km away from the top of mount Coronzat, e
periences monthly mean minimum and maximum tempe-
ratures of 0.4°C (January) and 23.8°C (July) retbpely
and an annual precipitation of 753 mm (averagesfro
1971 to 2000; weather station at the village of &ligs).

A total of 95 plots were distributed regularly atdes
of a grid with cells 450 m on a side (not all nodéshe
grid were sampled) (Fig. 1). Elevation of the platsged
from 655 to 2252 m a.s.l. (Fig. 2). Each plot cetes of
a circular area of 20 m radius in which ant nessevac-
tively searched by experienced ant collectors. Siagnp
was performed between July and October 2012 and be-
tween May and August 2013. Plots were searched for
cumulative time of 40 to 180 min. Investigation éde-
pended on habitat structure (plots with little vagien and
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few potential nesting sites were faster to samahae) on
the diversity of ants found (sampling stopped wihen
noticed a strong decrease in the rate of discoeEnew
species). To minimize the investigator effect, samgpvas
performed by four collectors highly experiencedaimt
surveys. This procedure allows an accurate conpané
diversity indices and community composition amolmsp
For those species that could not be identifiecabd¥i in
the field we collected a few individuals per nest later
identification under a binocular microscope (31%haf
nests). Species identification followed recent texmic
work and keys for the western PalaearctielfSrT 1988,
1992, 2007, 2012,CHLICK-STEINER & al. 2006b, 8IFERT
& ScHULTZ 2009, RDCHENKO & ELMES 2010, SEINER
& al. 2010, RGATO 2011, BATRIX & al. 2013). For the
Temnothoraxof theluteusspecies-group we followed &-
TEAUX & CAGNIANT (2012) and we used the naiigr-
mica scabrinodisensus lato, i.e., includifg. scabrino-
dis NYLANDER, 1846 andVl. martini SEIFERT, YAZDI &

ness and Simpson's reciprocal diversity index{] were
calculated for each plot.

Of the 95 plots, trees were present in 76. These 76
plots were permanent plots established for thetteal
for dendrometric monitoring of forest reserves"isTjpro-
tocol is derived from that used in the Europearg@mm
COST action E4 "Forest Reserves Research Network" a
was designed on behalf of the French ministry ofcagy,
sustainable development and energy by a workingmro
of experts at the national level. For these pltts,fol-
lowing environmental parameters were measureden th
field by R. Pimenta in the framework of the COSB-r
gram: slope, exposition, basal area (total surfaceipied
by the cross-sections of tree trunks over 7.5 came-
ter), tree species diversity (1 / D), and the dantrtree
species (i.e., the species with the largest tcdahbarea
in the plot). A basal area of zero was assignetth¢ol9
plots without trees. The other parameters weremess-
ured in these 19 plots, but slope and expositiorewe
ferred from the digital terrain model of the Frenwdtio-
nal institute of geographic and forest informat{t@N).

The effects of environmental parameters on ant rich
ness and diversity were analysed using a geneddiize
ear model (GLM) and linear and polynomial regressio
Linear and second order polynomial models were com-
pared with AIC. The effects of environmental partare
on ant community composition were analysed withea R
dundancy Analysis (RDA). This analysis combinegdin
regression and principal component analysis aravall
displaying plots, species and environmental paranset
in the same factorial space. Species recordedardg or
twice were removed to prevent analyses from bemg u
duly influenced by rare species. Exclusion of igpecies
is the standard procedure for running a R{B&OSRCARD
& al. 2011). Hellinger transformation was appliedtie
species abundance matrix before analysis. Dive(Gityv)
and community-composition (RDA) analyses were per-

ScHuLTz, 2014. Pitfall trapping and nest counting are theformed twice: once with all 95 plots (four enviroantal

two methods most frequently used in ant surveysveie
er, the data they yield are not always congruetti(&K-

parameters: slope, exposition, elevation and lzaea) and
once with the 76 plots with trees (six environméptaa-

STEINER & al. 2006a), and thus, the choice depends ormmeters: slope, exposition, elevation, basal area,dpecies

the goal of the study. Pitfall trapping better eeft above-
ground ecological impact because it favours epmsge-
cies with high nest densities and long-distancadorg
(SCHLICK-STEINER & al. 2006a). In contrast, nest count-
ing better accounts for the relative abundancénefdi-
verse life strategies, at least in temperate enmients. As
we focused on environmental factors as potentitdré
on ant communities, we preferred a more even repres
tation of the different life-styles and chose nestint-
ing. Nest counting was also more appropriate thdallp
trapping in our study because: (1) it allowed cotapan
of nest abundances for each plot (all nests eneoeitt
were recorded) in contrast to pitfall traps fromickhspe-
cies abundances do not reflect nest abundanceis,af2)
fered a greater efficiency in terms of species auda-
tion (GOTELLI & al. 2011), (3) the data it produced are
less sensitive to weather fluctuations, which areng at
short time-scale under mountain climate, and (d)dhs
no need to visit the plots a second time (acces®ti plots
was difficult because of steep terrain and poarktnzet-
work on Mount Coronat). Ant species abundances (he
number of nests per plot for each species), speitks

diversity and the dominant tree species).

A hierarchical classification of the plots basedta
composition of their ant communities (rare specms
moved) gave additional information on the relatiups
between ant communities and environmental paraseter
A dendrogram of the plots was obtained from thdihrtel
ger distance matrix, using the Ward method. Théiridelr
distance is the most appropriate for species alnaeddata
(BORCARD & al. 2011).

Data analyses and figures were performed using R
3.1.0 (RCorRETEAM 2014) and the R package vegamx{O
SANEN & al. 2013).

Results

A total of 1900 ant nests belonging to 74 speciesewe-
corded in the 95 plots (species are listed in Appe81,

as digital supplementary material to this artiakethe jour-
nal's web pages). SpeciesTigtramoriumgroupcaespitum-
impurumare distinguished from each other by male geni-
talia (LHLICK-STEINER & al. 2006b). Males were present
in 41% of the nests and were closest to thos€etfa-
morium alpestreSTEINER, SCHLICK-STEINER & SEIFERT,
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Fig. 3: Linear regression of ant species richnessdiversity on tree basal area and elevation fop®ts. AIC values
are given for linear ("AIC linear") and second ardelynomial ("AIC poly") models.

Tab. 1: Effects of environmental parameters onspetcies richness and diversity tested with a GLMalb®5 plots
(four parameters) and a GLM on the 76 plots comaitrees (six parameters). Values given for eaatameter are

those of the F statistic. P < 0.05, ***: P < 0.001.

Slope Exposition | Elevation Basal area Dominant tree species | Treediversity
95 plots Richnes 0.2 0.t 14.9%+* 22. 7%
Diversity 1.t 0.1 4.7* 27.0%*
76 plots Richnes 0.1 0.1 24 3% 28.8*** 2.C 0.2
Diversity 1.8 0.2 14.9%** 47.2%* 2.1 1.4

2010, a recently described species ofdghespitum-impu-
rum group (SEINER & al. 2010). As the other nest samples nificantly correlated (R = 0.0008P,= 0.99).
could not be identified precisely, for analysesomasid-
ered all records of theaespitum-impurungroup (includ-

ing those with males) as one species.

Both the GLM run on all 95 plots with four enviroan

tal parameters and the GLM run on the 76 tree-aaler

plots with six environmental parameters indicatest bnly
basal area and elevation had significant effectantrspe-
cies richness and diversity (Tab. 1). Values ofRhsta-
tistic indicated that basal area had the stronffecte es-
pecially on diversity. AIC values were lower fandiar than
for second order polynomial models (Fig. 3). Linear
gression showed that both ant species richnessliaad

sity decreased when elevation and basal area is®edea ber of significant axes of the RDA was higher (faigni-
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(Fig. 3). However, elevation and basal area wetesigp

Fifty species were used in the RDA after removal of
rare species. Analyses run on all plots and ond¢me
ered plots (four and six environmental parametand, 91
and 72 plots respectively, because in four plotaests
were detected) showed a relatively weak fit tortielel
(Rzadjusted: 0.17 and 0.23 respectively), but the global test
was significant (10000 permutatiofs< 0.0001). Rgjusted
values of RDA are usually quite low compared with tase
for other ordination methods. With six environmépiara-
meters, there was not only a better overall fih model
(Rzadjusted: 0.23) than when only four environmental para-
meters were included Eﬁjusted: 0.17), but also the num-
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Fig. 4: Correlation plots of the first two axesreflundancy
analyses based on (a) 91 plots and four envirorahpat
rameters and (b) 72 plots and six environmentadpar
ters. Numbers refer to plots, lower case text tcspacies
(for meanings of abbreviations, see Appendix SH)ugm
per case text to environmental parameters (ALTvale
tion, BA: tree basal area, SLO: slope, DIV: treecips di-
versity, EX: four categories of exposition in grad®&lE:

0 - 99, SE: 100 - 199, SW: 200 - 299, NW: 300 -)399
DOM: dominant tree species (QUQuercus ilexACO:
Acer opalus FRE:Fraxinus excelsigrFAS: Fagus syl-
vatica, COA: Corylus avellanaPIM: Pinus mugassp.
uncinatg PIS:Pinus sylvestris Percentages of explained
variance are indicated in brackets after axes nafhfese
percentages are adjusted values, i.e., explaingdnea

multiplied by Ragusted( BORCARD & al. 2011).

ficant axes, compared with three when four envirental
parameters were included). In both analyses, almvat
basal area and slope explained most of the dispersdi
the plots on the first two axes (Fig. 4). Howewadope
was negatively correlated with elevation (R = -0BX
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Fig. 5: Dendrogram resulting from hierarchical slfisa-
tion of plots based on ant species abundancesifigeil
distance, Ward's method).

0.001) in our study site. In the analysis on treeeced
plots the dominant tree species characterises2axigth
an opposition betweeQuercus ilexX_our. andFagus syl-
vaticaL. (Fig. 4b). However, interpretation should beica
tious because there were very few plots dominayettidse
species (two and four respectively) and, althoveh basal
area was not significantly different among dominaeé
species globally (Kruskal-Wallis test, Chi2 = 347 0.19),
plots dominated bQQuercus ilexandFagus sylvaticéhad
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Fig. 6: Mean ant species abundances for each dhthe groups of plots defined with hierarchicalssification based

on ant community composition.

respectively the lowest and the highest valuesieébarea.
Lasius cinereu$eIFERT, 1992 and~ormica fuscalINNAE-
us, 1758 were associated with plots dominate@bgrcus
ilex andLasius brunneufLATREILLE, 1798) with plots do-
minated byFagus sylvaticaTemnothorax nylande(FOER-
STER 1850), and to a lesser extémisius brunneysvere
associated with high basal area and steep slopmorin
trast,Lasius alienugFOERSTER 1850),Cataglyphis pili-
scapa(FOREL, 1901), andl'etramoriumgroupcaespitum-
impurumshowed the opposite trend. Three spediesino-
thorax tuberum(FABRICIUS, 1775),Formica lemaniBon-
DROIT, 1917, and_eptothorax acervorur(FABRICIUS, 1793),
were very characteristic of high-elevation pl@amponotus
herculeanugLINNAEUS, 1758),Formica lugubrisZETTER-
STEDT, 1838, andVlyrmica sulcinodisNYLANDER, 1846
showed a similar but weaker trend. In contr&stmica
fusca Temnothorax unifasciat s ATREILLE, 1798),Plagio-
lepis pygmaedL ATREILLE, 1798),Lasius cinereuyd asius
flavus (FABRICIUS, 1781), andAphaenogaster subterranea
(LATREILLE, 1798) were characteristic for low-elevation
plots. All other species were very close to thetreeof the
plot, and thus showed no preferences or had avenage
ferences.
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The dendrogram obtained by the hierarchical classif
cation of the plots based on the composition oif thet
communities did not show straightforward discoritinin
the branching pattern (Fig. 5). We chose to reamgttiree
groups of plots, subsequently named andc, because
the three groups thus defined reflected ecologiifédr-
ences; increasing the number of groups recognizetem
ecological interpretation difficult. Each of thedk groups
of plots had distinct, characteristic ant commasifFig. 6).
For describing ant communities in each group ofspiee
distinguished samples detramoriumgroupcaespitum-
impurumthat could have been identified Bstramorium
alpestrefrom those that remained unidentified (i.e., sam-
ples without males), because data on the ecologly. of
alpestreindicates it is a mountain specieSEBIER & al.
2010) and this information could help interpretthg eco-
logical characteristics of the ant community ofregooup
of plots. Plot group a was remarkably well separ&tem
the other groups in the dendrogram (Fig. 5). Thests
had low ant species diversity (Fig. 7) and were idatad
by Temnothorax nylande(iig. 6).Lasius brunneusvas
mostly restricted to these plots. Groaplots were situ-
ated at relatively low elevations and showed a Vegh
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tree basal area (Fig. 7). Plots in grdupere dominated
by cold-tolerant, especially boreo-alpine, spesigsh as
Camponotus herculeanusormica lemaniFormica lugu-
bris, Leptothorax acervorupMyrmica sulcinodisandTem-

ll) T

A as individual points.

from both low- and high-elevation domains) ¢UAIN &
GRYTNES 2010). Nevertheless, in contrast to what is com-
monly observed in the tropics, we did not detedttaamatic
drop of diversity toward the highest elevationshalgh

nothorax tuberungFig. 6). These plots were located at the our gradient reached 2400 m and covered a wideerahg

highest elevations and had low ant diversity (IFjg.Group
¢ was composed of all the other plots, correspontiire
mix for which interpretation is much less clear.

Discussion

Among the six environmental parameters considemed i
this study (slope, exposition, elevation, tree basza, tree
species diversity and the dominant tree species),asal
area and elevation had the strongest influencenbspze-
cies richness, diversity and community compositilope
and the dominant tree species appeared to hawtstfe
ant community composition but these are most likely-
founding effects of elevation and of tree basahare-
spectively. Indeed, in our study site, slope amdation
are negatively correlated, because the lower partastly
composed of mountain sides and the higher partioF s
mit plateaus. In addition, the apparent effect athant
tree species was due to the fact that a very smatber
of plots were dominated Quercus ilexor by Fagus syl-

elevation.

In our study, the most important determinant ofsga-
cies diversity was tree basal area. Tree basaladsessig-
nificantly affected ant community composition. Tdien-
drogram obtained from the hierarchical classifizatof
plots revealed one group (groapthat was particularly
well differentiated from the others based on amhcw-
nity composition. Plots from this group had the é&siv
ant diversity and were characterized by the highasal
areas, but not by the highest elevations. Thicatds that
basal area, or some vegetation trait correlateld iyitm-
poses a strong constraint on both ant communitypcem
sition and diversity. In our study area, which faac-
terized by a Mediterranean climatic influence,gpeaars
that basal area is even more constraining tharatitev
Tree basal area, a parameter that is quickly asity @aeas-
ured, is a good proxy for tree cover, and thereforghe
amount of sunlight that directly hits the groundl@w
vegetation, the two substrates where the vast iihajolr

vatica stands of which have respectively the lowest andtemperate ants forage. In similar environmentsararom

the highest basal area of the species present isites.
Studies on ant responses to elevation gradienscaree
in the Western Palearctic AdvAar 2005, GASER 2006,
HERRAIZ 2010, BERNADOU & al. 2013, 2015), despite the
fact that this region has the oldest tradition gfmecol-
ogy. The relationship that we observed betweenragiav
and ant diversity showed a linear decrease. Howeher
linear model did not fit as well. A possible expéon is
that our plots did not follow a linear transect tugre scat-
tered over the mountain, increasing the potentifeénce
of parameters other than elevation. In additioe, dp-
parent effect of elevation on ant diversity restriten the
combination of abiotic factors that are themselwndlsi-
enced by elevation. A strong correlation betweenatlon
and ant diversity is thus not expected. For instaBeRr-

our study sitelow basal area was shown to favour the
abundance of a dominant ant species, which in dirn,
luted the positive effect of habitat openness drdarer-
sity (ARNAN & al. 2009, BERNADOU & al. 2015). Previ-
ous studies have already highlighted the positffeceof
habitat openness on ant diversitye(RNA & CERDA
2000, ARNAN & al. 2009, L TORO 2013, CEL TORO &

al. 2013, EERNADOU & al. 2013, 2015). Here we propose
that the limitation of radiant heat by tree coveplains
this effect on ant diversity. @ELLI & ELLISON (2002)
found higher ant diversity with increasing lighadlability

in a forested temperate environment, but lower rditxe

in bogs (open) than in forests. We believe thispgastern
may be due to particularly high moisture at groilencel

in bogs, which may be detrimental to ant activiegcause

NADOU & al. (2015) described a decrease of ant diversityit dissipates radiant heat at ground level. In exie en-

with increasing elevation in two sites in the Pgenimoun-
tain, but the correlation was not significant. ddaion,
our altitudinal gradient started at 600 m. Invesign at
lower elevations might thus change the shape ofinee.

vironments however, specific abiotic factors mapase
stronger constraints than radiant heat. This iscts® of
arid environments where water availability stronfijtgers
ant communities. As a result, ant diversity wasvahto

Some studies have documented a mid-elevation peak iincrease with elevation ASDERS & al. 2003), a very un-

species richness of various taxad@hIN & GRYTNES
2010), including ants MSsoN & al. 1997, 3NDERS 2002).
Mid-elevation peaks in diversity have been expldibg
the fact that a high proportion of lowland habithts/e
been disturbed by human activities or by a mid-dioma
effect (i.e., the mid-elevation domain combinesedsity

usual pattern.

The radiant-energy hypothesis, i.e., the hypothbsis
radiant energy that heats the foraging substraaenieng
the factors most constraining ant diversity and womi-
ty composition, provides a good explanation forlamnd
global patterns of ant diversity. However, variatio sub-

125



strate use should be considered when interpretita id
the light of the radiant-energy hypothesis. Treeecads
particularly detrimental to ant diversity in tematr eco-
systems (RTANA & CERDA 2000,ARNAN & al. 2009, FL

TOR0O 2013, EL TORO & al. 2013, EERNADOU & al. 2015)
because most ants forage on the ground and loviatege
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